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1. INTRODUCTION

The concept of similarity is commonly used in relation with clustering and collaborative filter-
ing methods in many fields, including information retrieval, data mining, network analysis, pat-
tern recognition and machine learning. Basic task for these methods is to calculate similarity
between data entries and find most similar to one another.

Tree structures are used to represent various types of hierarchical data. Examples include
different ontologies, catalogs, genealogies, XML documents, language corpuses, etc.

In our work on intelligent tutoring and testing systems we need to evaluate similarity between
the questions of a test in order to predict answer scores. We use tree data structures for domain
modeling. Nodes of a tree represent themes or subjects; leaves represent questions. So, the main
goal of our study is to develop effective and accurate measure of similarity between tree leaves.

In this paper, following the work [1], we discuss only abstract graph theoretic methods to
compute the similarity on tree nodes without any regard to the problem domain.

Perfect studies on different approaches to the measuring of similarity as semantic distance that
do relate to the problem domain, i.e. information retrieval, could be found in the works [2], [3],
and [4].

2. PRELIMINARIES

A tree is a connected undirected simple graph with no cycles. Any two nodes of a tree are
connected by a unique simple path, which is the shortest path between them. We consider a rooted
tree, which has a root node and leaves.
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We denote the number of tree nodes by n, nodes (vertices) by v1, v2, �; particularly, root node
by t, leaves by q1, q2, �; parent nodes by t1, t2, �; the lowest common ancestor of vertices vi and
vj by lcaij, length of the shortest path between vertices vi and vj by l(vi,vj), number of common
neighbors of vertices vi and vj by nij.

Also we use the following notation: A for adjacency matrix, aij for its elements, Ai for its rows,
Aj for its columns, I for identity matrix, Ã for ancestor matrix with elements ãi,j = 1 iff the jth
vertex is an ancestor of the ith vertex, ki for degree of ith vertex, D for diagonal degree matrix with
elements dii = ki, L for Laplacian matrix, which is D � A.

Note that aij = aji = {0 or 1} and aij
2 = aij for all i, j; nij = Σkaikakj, ki = Σkaik.

3. DISTANCE ON VERTICES

Similarity is somewhat opposite to the concept of distance between information elements. One
can use distances or metrics to construct similarity measure for any kinds of elements. For example,
if d(x,y) is a distance between x and y, then their similarity could be measured as follows [5]:
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In general, many types of monotonically decreasing functions could be used for this purpose.

3.1. PATH METRIC

The obvious measure for distance on tree nodes could be a path metric [6], i.e. length of the
shortest path between them:

 ( ) ( ) ( ), , ,i j i ij j ijl v v l v lca l v lca= + . (2)

The similarity measure that is based on path metric then could be expressed as
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But it is not so useful for hierarchical data
structure, because it makes no difference between
similarities of node pairs located at different
depths.

Consider a simple curriculum (fig. 1). It is
obvious that the similarity between questions q1
and q2 should be greater than the similarity
between questions q5 and q6, because they belong
to the more specific theme «Matrices». However,
the distances between them are equal.

Later, we shall improve path-based similarity
measure by removing this effect.

3.2. RESISTANCE DISTANCE

The resistance distance Ωij between vertices vi and vj of a simple connected graph G could be
used to compute similarity [7] and is defined as

 

ij ii jj ij jiΩ = Γ + Γ − Γ − Γ , (4)

where Ã is the Moore-Penrose inverse of the Laplacian matrix L of G.

Fig. 1. Example of a simple curriculum
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However, it is shown [8] that in the case of a tree:

                           i, j det [ ; ] ( , )i ji j l v vΩ = =L , (5)

where L[i; j] is a submatrix of L that is obtained by deleting the
ith and the jth rows and columns from L.
Sad, but the resistance distance in a tree is just a path metric again.

3.3. ADJUSTED PATH-BASED SIMILARITY

Now return to the path metric. A simplest way to account for the
granularity of the domain, to which belong concerned vertices, is
to adjust formula (2) as
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Obviously, la is not a metric. This could be simply illustrated by a contrary instance. For
example, in fig. 2, la(qi,qk) = 6, la(qi,qj) = 4/3, la(qj,qk) = 4, so la(qi,qk) > la(qi,qj) + la(qj,qk).

Nevertheless we could use la as a dissimilarity measure, since it is larger for vertices that are
more distant to each other.

So the adjusted path-based similarity measure could be written as
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4. STRUCTURAL EQUIVALENCE

Two vertices of a graph are called structurally equivalent if they share the same neighbors.
Thus, the similarity of vertices could be expressed by generalization of the number of common
neighbors.

As the simplest and most obvious measure for the structural equivalence, the number of common
neighbors is used itself [1].

But in the case of a tree it turns to be a binary variable that is equal to 1 if two vertices have the
same parent, and is equal to 0 otherwise. So it is almost useless value.

4.1. COSINE SIMILARITY

One of the most popular similarity measures is a cosine similarity. It is defined by the following
simple formula [9]:

 ( , )
cosij

x y

x y
σ θ= =

⋅
, (8)

where x and y are two vectors,  x  and  y  are the norms of x and y, (x, y) is their dot product and

θ is the angle between them.
It is often proposed to represent vertices of a graph as corresponding rows (or columns) of the

adjacency matrix, so we could obtain that [1]:
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Fig. 2. Example of a tree, where
la(qi,qk) > la(qi,qj) + la(qj,qk)
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This value is almost useless again in the case of tree nodes. Especially, this is true for tree
leaves, because they always have degree 1.

4.2. EUCLIDEAN DISTANCE

Given two vectors x and y we could compute the Euclidean distance between them:
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For the distance on graph nodes it could be written as

 

222( , ) ( ) 2( , ) 2E i j ik jk i j i j i j ijk
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This formula gives another degenerated measure on nodes and, especially, leaves of a tree.

4.3. TANIMOTO SIMILARITY MEASURE

The next similarity measure that deals with vectors is the Tanimoto coefficient [9]:
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or using the previous representation of graph vertices as rows of adjacency matrix:
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It is a different mix of degrees and common neighbor counts that gives trivial results on tree
nodes and leaves.

Consider two sets M and N. Jaccard index [6] is defined on these two sets as
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Jaccard index measures the similarity between two given sets as the size of their intersection
divided by the size of their union.

Let us arrange all members of  M N∪  in an ordered list L with elements li. Consider binary

vectors x and y with respective components:

 1,  if ; 1,  if ;
and

0,  otherwise, 0,  otherwise.
i i

i i

l M l N
x y

∈ ∈ 
= = 

 
(15)

Tanimoto coefficient of these vectors is equivalent to the Jaccard index of the given sets [9]:

 ( , ) ( , )TS x y J M N= . (16)

4.4. PEARSON COEFFICIENT

One could use the standard Pearson correlation coefficient as the measure of similarity between
two given vertices as:
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And again, for leaves of a tree, we obtain degenerated formula

 1, if and have the same parent;
1

1
1 , otherwise.

1

i j
ij

ij

v v
n n

r
n

n

− = = − − −
(18)

4.5. DIFFERENT REPRESENTATION OF TREE VERTICES

Other kinds of measures could be applied to binary vectors. Examples include various weighted
metrics, set and string distances, and even logical comparison [9]. But if we remain to use them
directly on rows of adjacency matrix of a tree, then the results will be trivial again.

We propose another way to represent tree nodes that is based on using of an ancestor matrix
instead of the adjacency matrix. The ancestor matrix Ã of a graph is defined as a square matrix
where an element ãi,j is set to 1 if the jth vertex is an ancestor of the ith vertex, and 0 otherwise.
The ancestor matrix is less sparse than the adjacency matrix of a tree, so it gives us more effect.

It should be noted that different vertices vi and vj of a graph can have equal corresponding rows
Ai and Aj of its adjacency matrix. Particularly, this applies to any pair of leaves, such that they are
children of the same parent node in a tree. Thus any of the similarity measures, described in this
chapter, would give the highest value on this pair of leaves. Such behavior is undesirable, because
we assume that only identical elements should have the highest value of similarity [3]. This could
be observed in the case of using of Ãi and Ãj too.

To get rid of this effect we propose to use rows of  C = I + Ã  matrix as binary vectors for
measuring of distances and similarity between nodes of a tree.

Two following results of this approach reveal the relationship between the graph distance on
tree nodes and the metric on rows of the extended ancestor matrix C of this tree.

Theorem 1. Let T be a rooted tree with ancestor matrix Ã. Then

 ( , ) ( , )a i j T i js v v S C C= (19)

for any two vertices vi, vj of T and corresponding rows Ci, Cj of  C = I + Ã.

Proof: Consider the sets 
1 2 1 2

{ , , ,..., , , ,..., }i i i i ij k kP v t t lca t t t=  and 
1 2 1 2

{ , , ,..., , , ,..., }j j j j ij k kP v t t lca t t t= ,

where t is the root of T, lcaij is the lowest common ancestor of vi and vj in T,  
pkt are their other

common ancestors;  
li

t ,  
mj

t  are the other ancestors of given vertices vi and vj, respectively. In this
notation, using equation (16) and definition of the Jaccard index (14) we directly obtain that
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We recall that the length of the shortest path between two vertices is one less than the number
of vertices in this path. Then we notice that
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Finally, we can write
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It turns exactly to the sa(vi ,vj) by some trivial algebra.     n

j
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Corollary 1. We can define a proper metric on vertices of T as

 ( , )
( , )

1 ( , ) ( , )
i j

a i j

ij i j

l v v
l v v

l lca t l v v
=

+ +
% . (25)

Proof: Formula (25) is derived immediately by defining  ( , ) 1 ( , )a i j a i jl v v s v v= −%  from
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Theorem 1 shows that 1 � sa(vi,vj) is equal to the Tanimoto distance 1 � ST(Ci,Cj), and the Tanimoto
distance is known to be a proper metric [9]. n

Theorem 2. Within notation of Theorem 1,

 ( , ) ( , )E i j i jC C l v vρ = . (26)

Proof: Using the same approach and formulas (11), (21), (22) and (23) we obtain

 ( , ) 1 ( , ) ( , ) 1 ( , ) ( , ) 2(1 ( , ))E i j i ij ij j ij ij ijC C l v lca l lca t l v lca l lca t l lca tρ = + + + + + − + ,    (27)

which is equal to  ( , ) ( , ) ( , )i ij j ij i jl v lca l v lca l v v+ = . n

For other kinds of metrics and similarity measures, defined on rows of the extended ancestor
matrix, path-based expressions could be obtained by using the same technique.

5. DISCUSSION

Similarity measures on tree nodes were discussed primarily in relation with semantic similarity
and its applications [2, 3, and 4]. Edge-counting methods were well developed in this area. The
closest form to our adjusted path-based similarity measure is that was proposed in [10]. It will be
interesting to adopt the technique shared by previous researchers [2, 3, and 4] to compare these
measures in terms of correlation with human judgment.

Some of tree comparison methods, e.g. consensus methods, are based on computing of similarity
between tree nodes too. Moreover, in the particular work [11] a set similarity measure in the form
of Jaccard index is used. The difference is that they define it on leaf sets under nodes of leaf-
labeled trees, whereas we consider extended ancestor sets for nodes of any rooted tree.

While the theoretical relationship between resistance distance in graph and Euclidean distance
in some vector space is well known [8], we believe that particular result, obtained in Theorem 2,
was not observed earlier.

Theorem 1 and Theorem 2 give us a way to compute distances on nodes of a tree using standard
vector operations.

On the other hand they provide us with simple path-based methods to measure similarity in
tree structured data.

We propose to use these measures in many other related areas, for example, content-based
image retrieval [12] or case-based reasoning student diagnosis [13].

6. CONCLUSION

This work provides a survey of similarity measures on nodes of a tree. Distance-based and
structural equivalence measures are discussed. A new method for representing tree nodes and its
use for measuring similarity is described. Theorems 1 and 2 give interesting results about relationship
between paths on tree nodes and metrics on rows of extended ancestor matrix of this tree. Future
work would be related with further studying of different similarity measures and their comparative
analysis.
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Àííîòàöèÿ

Â äàííîé ðàáîòå âûïîëíåí îáçîð ìåð ñõîäñòâà ìåæäó âåðøèíàìè ãðàôà. Îïèñàíû
ìåðû, îñíîâàííûå íà ðàññòîÿíèè, è ìåðû ñòðóêòóðíîé ýêâèâàëåíòíîñòè. Ïîêàçàíî, ÷òî
áîëüøèíñòâî èç íèõ âûðîæäàþòñÿ, åñëè èõ íåïîñðåäñòâåííî ïðèìåíÿòü ê óçëàì äåðåâà.
Ïðåäëîæåíà ñêîððåêòèðîâàííàÿ ìåðà ñõîäñòâà, îñíîâàííàÿ íà ðàññòîÿíèè, à òàêæå íî-
âûé ìåòîä ïðåäñòàâëåíèÿ óçëîâ äåðåâà áèíàðíûìè âåêòîðàìè, îñíîâàííûé íà èñïîëü-
çîâàíèè ìàòðèöû ïðåäêîâ. Ïîêàçàíî, ÷òî ïðèìåíåíèå îáû÷íûõ ìåð ñõîäñòâà ê ýòîìó
ïðåäñòàâëåíèþ äà¸ò æåëàåìûå íåòðèâèàëüíûå ðåçóëüòàòû.

Êëþ÷åâûå ñëîâà: ìåðà ñõîäñòâà, ðàññòîÿíèå íà óçëàõ äåðåâà, ñòðóêòóðíàÿ ýêâèâà-
ëåíòíîñòü, ìàòðèöà ïðåäêîâ.
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